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Solid state convection models of the lunar internal temperature

By G. SCHUBERT
Department of Geophysics and Space Physics, University of California, Los Angeles,
California 90024, U.S.A.
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NI

O E Thermal models of the Moon, which include cooling by subsolidus creep and con-
e sideration of the creep behaviour of geologic material, provide estimates of 1500
Q) 1600 K for the temperature, and 102'-1022 cm?/s for the viscosity of the deep lunar
i) interior.

=

INTRODUCGTION

There is no question that the advection of temperature by the subsolidus creep of geologic
material is an a priori important mechanism of heat transport in the interiors of all the
terrestrial planets. To what extent heat transfer by solid state convection dominates the thermo-
mechanical state of a planet’s interior depends on the rheological behaviour of the material as
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a function of its temperature, pressure, stress, volatile content, etc., and, of course, on the
values of these properties within the body. Although there are many uncertainties in the
construction of thermal models of a planet, our lack of knowledge of the appropriate stress-rate
of strain law to apply under conditions of very high pressure, in particular, is a major source
of uncertainty in assessing the importance of solid state convection. In this connection, the
question of whether convection is confined to the upper mantle of the Earth or extends
throughout the entire mantle is one of much current debate.

In the case of the Moon, our knowledge of the rheological law governing subsolidus deforma-
tion is, at the moment, probably on firmer ground than for any of the other terrestrial planets
save the upper mantle of the Earth. This is mainly because of the small size of the Moon; the
pressure at the centre of the Moon is about equal to that at a depth of 150 km in the Earth.
None of the major silicate phase transitions known to occur at depths of 400 and 650 km in the
Earth can take place on the Moon. Thus we may use our rapidly expanding understanding of

/|

the rheological behaviour of geologic materials characteristic of the Earth’s upper mantle,
obtained from postglacial rebound studies and laboratory measurements of rock and single
mineral crystal deformation, to model the creep behaviour of the entire lunar interior. Of
particular importance here, in view of the extensive depletion of volatiles in lunar material, is
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the recent determination of the law governing the low-stress, high-temperature creep in dry
olivine single crystals by Kohlstedt & Goetze (1974).

The possible role of solid state convection in regulating the Moon’s internal temperature has
long been advocated by Runcorn (1962, 1967) on the basis of the departure of the lunar figure
from hydrostatic equilibrium and by Tozer (1972) on the basis of the creep behaviour of rocks
at elevated temperatures. Linear stability analyses, including effects of variable viscosity,
indicate that thermal conduction models of the Moon would likely be unstable against
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subsolidus convection (Schubert, Turcotte & Oxburgh 1969; Cassen & Reynolds 1973, 1974).
Estimates of the viscosity of lunar material below several hundred kilometres depth support the
possibility of solid state convection beneath a relatively rigid lithosphere. These viscosity
estimates (Meissner 1975) assume, a priori, the thermal state of the lunar interior.

A numerical, finite-difference calculation of the lunar temperature, including heat transport
by solid state convective motions of finite amplitude (Turcotte, Hsui, Torrance & Oxburgh
1972), gives temperatures which are much lower, and when averaged over a spherical surface,
which are much more uniform with depth than temperatures computed on the basis of heat
transfer by conduction alone. Cassen & Young (1975) have quantitatively investigated the role
of finite-amplitude subsolidus convection in cooling and eventually solidifying a possible molten
or partially molten lunar core. They found that solid state creep is such an efficient heat trans-
port mechanism that if radioactive heat sources were completely removed from the lunar
interior by differentiation, any molten core would rapidly solidify on a geologic time scale.
However, if radioactives were present in the Moon’s interior, these heat sources would supply
the heat flux carried by subsolidus convection and temperatures sufficiently high for a molten
or partially molten core would be maintained.

In this paper we numerically calculate lunar temperature profiles and their dependences on
viscosity of the lunar interior for models which include finite-amplitude solid state convective
cooling. Since the temperature in regions of subsolidus creep is relatively uniform with depth
we can plot the deep lunar temperature as a function of viscosity ; this temperature increases with
increasing viscosity since the more viscous the interior, the less vigorous the convection and the
less efficient the cooling by solid state creep. In addition, our knowledge of the laws governing
deformation of geologic materials likely to be representative of those inside the Moon enables
us to calculate viscosity—temperature dependences. If we plot temperature against viscosity
according to the rheological behaviour of geologic material, we find temperature to decrease
with increasing viscosity. The intersection of these two temperatures against viscosity curves
determines the thermal state of the lunar interior consistent with both solid state convection
and the rheological behaviour of geologic material. We find that the deep lunar temperature
is between about 1500 and 1600 K with an effective viscosity between 10%* and 10%2 cm?/s.

The Apollo programme of lunar exploration has provided us with measurements of the
seismic velocities and electrical conductivity of the Moon’s interior, and the heat flux at two
locations on the Moon’s surface. These geophysical data can be used to infer characteristics of
the lunar temperature profile. In the concluding section these data are discussed, and their
implications for the Moon’s temperature are compared with our thermal models.

DESCRIPTION OF THE MODEL

Our model of the Moon’s interior consists of a rigid outer spherical shell, the lithosphere,
surrounding a spherical shell, the mantle, in which subsolidus convection can occur. We allow
for a small, central core following the speculation of Nakamura et al. (1974). Radioactive heat
sources are assumed to be distributed uniformly throughout the lithosphere and mantle with a
concentration ¢ (energy/time/volume). An arbitrary concentration of heat sources may exist
very near the lunar surface as a result of previous differentation without affecting the interior
thermal state. A major assumption of our model is that sufficient heat sources have been
retained in the interior to drive a convective flow. The mantle is taken to be a Boussinesq fluid
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with infinite Prandtl number, so that we neglect inertial terms in the equations of motion — a
fully justifiable assumption for the highly viscous material of the lunar mantle.

The numerical calculations of subsolidus convection in the mantle are carried out for a
mantle of constant kinematic viscosity v. However, as discussed in the introduction, we investi-
gate a range of values of viscosity and determine ‘the’ internal lunar temperature and viscosity as that set of
values which simultaneously satisfy the convective thermal model calculations and the likely rheological law
Sfor deformation of lunar material. 'The fact that the spherically-averaged lunar temperature is
almost constant with depth allows the procedure to be meaningful.

Other physical properties pertinent to the thermal calculations, such as density p, thermal
conductivity £, thermal expansivity a, and specific heat at constant pressure ¢,, are assumed to
be constant and to have the same values for both the lithosphere and mantle.

The boundary conditions for the calculations are:

(1) A constant temperature 7" = T at the lunar surface r = Ry (r is the radial location of
a point in the Moon).

(2) Continuity of temperature and heat flux at the mantle-lithosphere boundary r = R,.

(3) An insulating core-mantle boundary, i.e. no heat leaves or enters the core at any place
on the core-mantle interface r = R;. With this boundary condition we need not place any
a priori specification on the deep lunar temperature. We have assumed that if a small lunar
metallic core did exist it would contain only a relatively unimportant quantity of 9K and
supply an essentially negligible fraction of the surface lunar heat flux. Neither could the cooling
and solidification of such a small core provide a non-negligible portion of the lunar heat flow
for any substantial fraction of geologic time.

(4) Non-slip rigid and slippery rigid velocity boundary conditions for the mantle-lithosphere
and core-mantle interfaces, respectively. Both boundaries are rigid in the sense that they are
assumed not to distort. The core-mantle boundary would likely approximate a boundary with
zero tangential stress (slippery) if the core were liquid. The mantle-lithosphere boundary is
most likely a non-slip one (i.e. the velocity of the convecting mantle must be zero at this inter-
face) in light of both the apparent thickness of the lithosphere, at least several hundred kilo-
metres, and the absence of any surface expression of horizontal displacements of parts of the
lithosphere. In the following we will refer to a slippery boundary as free and a non-slippery
one as rigid.

The equations and boundary conditions of the model are summarized in mathematical form
as follows. Time ¢, distance r, velocity u, pressure p, and temperature 7 are assumed dimension-
less with respect to (Ry—Ry)?[k, (Ry—Ry), «[(Ry—R,), pvk[(Ry—R,)% and Q(R,— R,)?¥k,
respectively, where « is the thermal diffusivity £/(pc,). The temperature is referenced to the
spherically symmetric conduction profile, i.e. in addition to being dimensionless, T is the
difference between the temperature and the value of the spherically symmetric conduction
temperature at the mantle-lithosphere interface.

The equations governing the temperature and velocity fields in the mantle are:

V.u=0, (1)
%:-5—1+u.VT = V2T+1, (2)

N
= —Vp+Viu+Ra (1+;—3) rT, (3)
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where
_ 4naGp(Ry—R)°Q
Ra = 3kvk ’ (4)
R R? M,
S = R-Rp {<F’“1) (M—Mc) -1, (%)

G is the gravitational constant, M is the total mass of the Moon and M, is the mass of the
central core. The Rayleigh number Ra is the parameter measuring the vigor of the convection
and § is the parameter characterizing the variation in acceleration of gravity due to self-
gravitation of the body.

The boundary conditions for equations (1)—(3) are

_d? _d7, 4Ty o
u’—d_ﬂ(mr)_aT—T—O’ on r=pf-1, (6)
u=0, 7, =0, on r=p, (7
c, s c, S _ (1_a2l+1) 3 D
T35/(d TR dr) = i+ naw O 7T s (8)
where _
a = Rs/Ro: = Ro/(Ro—Ri), (9)

and u, is the radial component of velocity. In writing (6)—(9), we have considered the tempera-
ture as the sum of two parts, T;(r), the average value of 7" on a spherical surface and an angular
dependent part

8

£ 5 Py (c050) (Tir) cos mp + T (1) sin m, (10)

where 7, 0, ¢ are spherical coordinates and Py, (cos #) are the associated Legendre functions.
Equation (8) follows from the continuity of temperature and heat flux at the mantle-
lithosphere boundary and assumes that the lithospheric temperature is given as the solution of
the steady state heat conduction equation. Thus this boundary condition is only an approxima-
tion for non-steady conditions. Finally we note that the dimensionless steady-state conduction
temperature profile is o ~
P (Bt (-1 _r "
6 348 3r 6"

A complete solution of the problem requires specification of the geometrical parameters &
and B, the Rayleigh number Ra and the self-gravitation parameter S.

ViscosITY DEPENDENT SUBSOLIDUS
CONVECTION TEMPERATURES

The equations governing the temperature and velocity field in the convecting mantle are
solved numerically using the method of Young (1974), wherein velocity and temperature
. . . sin m . .
variables are expanded in surface spherical harmonics P, (cos ) (cos mg) with coefficients
depending on r. We have investigated only the axisymmetric, m = 0, modes of convection in
the mantle.


http://rsta.royalsocietypublishing.org/

PN

s |

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Model parameter values

In the previous section we noted that the state of thermal convection in the mantle depended
only on the parameters Ra, S, @ and f. To evaluate the latter two geometric quantities, we must
choose values for the core radius R; and the outer radius of the mantle Ry(R; = 1740 km).
The radius of a possible metallic core in the Moon is necessarily small because of the value of
C/MR?) (C is the moment of inertia about the rotation axis), 0.395 +0.005 (Sjogren 1971;
Williams ef al. 1974; Kaula ef al. 1974), which is very close to the value of 0.4 for a homogeneoug
Moon. The radius of a pure iron core is limited to 300-400 km; if the core contained a lighter
alloying element the radius could be somewhat larger. We choose R; = 300 km. The precise
size of such a small lunar core would not be expected to significantly influence the deep lunar
temperature.

There is considerably more uncertainty in the choice of the thickness of the rigid lithosphere
(R,—R,). This must be at least a few hundred kilometres to support the mascons (Kaula 1969;
Arkani-Hamed 1973) and could conceivably be as thick as about 800 km based on the attenu-
ation of seismic shear waves (Nakamura et al. 1973; Toks6z ef al. 1974). It is important to note
that the lithosphere thickness must be chosen consistent with the assumed value of the con-
centration of heat producing radioactives @, i.e. the temperature at the base of the lithosphere
must not greatly exceed (or fall far below) that temperature at which geologic material can
undergo significant subsolidus creep on a geologic time scale. Although the temperature at
which creep becomes important cannot be precisely defined, we will see in our discussion of
rheological behaviour that it is probably about 1000 °C.

The steady state (dimensional) temperature at the base of the lithosphere, averaged over the
spherical surface, is

s QKD QR (1 1)

o Tk \RR) (12)

where T} is the surface temperature, 7' = T at r = R,. Using R, = 300 km, R, = 1740 km,

= 4x10°erg cm1s~1 K-1and T = 0 °C in expression (12), we can determine those values
of @ and R, that give reasonable temperatures (~ 1000 °C) at the base of the lithosphere. We
have considered two models. In the first, the lithosphere thickness is 300 km, R, = 1440 km,
& = 1.208, § = 1.263, and § = 0.0258. This lithosphere thickness, together with a value of
Q = Qp = 2.6 x10~7 erg (cm™3s™1) gives an average temperature of 1026.5 °C at the base
of the lithosphere (Qg is the terrestrial value of @, obtained by assuming that the Earth’s
surface heat flow originates from radioactive sources uniformly distributed throughout the
Farth’s mantle). The second model has a lithosphere thickness of 800 km, R, = 940 km,
@ = 1.851, f = 1.469, S = 0.1460, Q = Q/2 and an average lithosphere base temperature of
1150 °C.

Only the Rayleigh number remains to be discussed. With @ given as either Q¢ or Q¢ and
(R,—R,) having the corresponding values of 1140 km and 640 km, we can write Ra as

4 x 10% 6.3 x 10%
_ 9.9 x 10 1
Ra v(cm?/[s) o v(cm?/[s) (13)
for the thin and thick lithosphere models, respectively. In arriving at these Ra-v relations we
have additionally assumed a = 3x103K-1, p = 3.34 gfcm?, k¥ = 4x10° erg cm~! st K1
and x = 1072 cm?fs.
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For either lithosphere model, we make a series of thermal convection calculations for Rayleigh
numbers ranging from the critical value Rag,; to as much as 500 Ra,y;. According to linear
stability theory the mantle is static for Ra < Ra,,, and the temperature is the steady state
conduction temperature; at Ra > Ragy; convection occurs. With increasing Ra or decreasing
viscosity v, convection becomes more vigorous and efficient at cooling the mantle, and the deep
lunar temperature decreases. Thus for the thin or thick lithosphere model we know the deep
temperature of the Moon as a function of viscosity. To decide which temperature and viscosity
characterize the real Moon we incorporate rheological information.

Linear stability calculations

The value of the critical Rayleigh number and the state of convection in the mantle at the
onset of instability can be determined independently of the numerical finite-amplitude convec-
tion calculations. This is important because the separate stability computation provides both a
check on the finite-amplitude method and a set of temperature and velocity variables with
which to start the finite-amplitude computations. The equations and boundary conditions for
the linearized stability problem are (see Chandrasekhar 1961)

(o) it _ (82,24 1040) e (19)

7 3 dr? 7 dr r2 e

dz 2d [({+1)\2 ¢ s S X
(o7 5" wlie = Ra (1453) 0+ 1) Tige, (15)
(rug)iy = & (rug)i = dqme_ o on r= B-1 (16)

r/)lm dr2 T/im dr im > 4

d —

()it = g ()i = 0, on 7=, (17)

, AT3" iy 3 7
Tt (I I+ 1)at) = =38 (1-a*)f, on 7 =f, (18)

where 7" is the temperature perturbation (the amount by which the temperature exceeds the
conduction temperature profile) and the (§;7) notation has been introduced in expression (10).

The linearized stability problem is actually independent of m. Since the system (14)—(18) is
homogeneous it possesses a nontrivial solution only for certain values of Ra, i.e. Ray, which
for a given set of values of &, £ and S, depend only on /. Figure 1 shows these values of Ragy,
as functions of / for the thin and thick lithosphere models and the free-rigid velocity boundary
conditions. Lithosphere thickness is a parameter because, of course, the values of @, £ and S
depend on this quantity. It influences the stability problem both in its effect on the geometry
of the convecting region and in its influence on the steady-state thermal conduction profile.
The critical Rayleigh numbers for the thin lithosphere model with free-free velocity boundary
conditions are also shown for purposes of comparison. Although continuous curves connect
values of Ra,,; at different / values, the Rayleigh numbers only have meaning at the integer
values of /.

For a particular lithosphere thickness model, convection in the mantle sets in when Ra
exceeds the minimum of the values of Rag,; shown in figure 1; the meridional pattern of the
convection, at the onset of convection, is determined by that value of / associated with the
minimum Ragy,;. The minimum values of Rag,; for the thin and thick lithosphere models are
7078.55 and 3177.43, respectively, both associated with the / = 2 mode of convection. The
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viscosities associated with the onset of convection are 5.66 x 1023 and 2 x 1022 cm?/s, respectively.

In the following, Ra,, will be understood to be the minimum value of the critical Rayleigh
numbers.

13600

10400

Racrit

7200

4000

Ficure 1. Critical Rayleigh numbers Ra,,, for the onset of convection (according to linearized stability theory)
in internally heated models of the lunar mantle as a function of the spatial pattern at the onset of convection,
given by the degree / of the associated Legendre function Py(cos 6) (0 is the colatitude). Only the values of

Ra,,;, at integer values of / are significant.

LUNAR TEMPERATURE PROFILES FOR ASSUMED VALUES OF VISCOSITY

The numerical convection calculations were started using velocity and temperature values
from the linearized stability computations for the / = 3 mode of convection as inputs to the
finite-amplitude convection programme. An / = 3, rather than an / = 2, starting mode was
used since the equations of motion do not generate odd / modes from a starting convection
pattern in which such modes are completely absent. The convection computations included all
modes with [ = 1, 2, 3,..., 16. Computational times were generally about a thermal diffusion
time based on the thickness of the mantle, i.e. (Ry— R;)?/. In every case the time of a computa-
tion was sufficiently long to establish either a steady-state or, as was more often the situation,
a quasi-steady state (see discussion below) in the average temperature.

Steady-state convection was achieved (within the limitations of the computational time) only
at low values of the Rayleigh number. Among the results reported here, only the cases Ra =
10 Rag,y, for the thin lithosphere model and Ra = 2.5 Ra,, for the thick lithosphere model
reached steady-state. In all other cases, i.e. those at higher Rayleigh number, the convection
was oscillatory. However, the temperature averaged over a spherical surface, T,(r), was
remarkably steady compared to the velocity field and the angular dependent components of

34 Vol. 285. A.
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the temperature field. Fluctuations in 7,(r) were never larger than a few percent; the average
temperature profile 7, (r) appears to be a quasi-steady feature of the non-steady convection we
find occurring in the internally heated mantle at high Rayleigh numbers!

Generally speaking, there is no single mode which dominates the convection; the first several
modes contribute about equally and the contributions of the modes with higher values of /
eventually become unimportant for [ sufficiently large. Just how large / needs to be to adequately
characterize the convection, i.e. how many modes need be retained in the calculation, is a
function of the Rayleigh number. The higher Ra, the larger the number of modes required to
represent the convection. The sixteen modes we have retained are quite sufficient except
perhaps for the largest Rayleigh number, 500 times Ra,;, investigated in the thin lithosphere
model.

1920
10 Ratyiq, 5.7x10%—
F 50 11x10™
ol 10 57%10% R
500 11x10" 4~ _Z /?‘—i R

L [ S -
E // 22
o 960F 7 Ra,y,2x10

Ve

S 7 2.5 79x10%

- i 10 2x10*

7 20
480 i 50 4x10
/
/
- /
/
/
0 I 1 | | | 1 | |
320 640 960 1280
depth/km

F1cure 2. Models of the average (over a spherical surface) temperature of the Moon as a function of depth, based
on numerical, finite-amplitude calculations of convection in a lunar mantle with constant viscosity and a
uniform concentration of radioactive heat sources. The solid curves refer to a Moon model with a 300 km
thick rigid lithosphere and a terrestrial concentration of heat sources; the model associated with the dashed
curves has an 800 km thick lithosphere and 509, of the terrestrial heat source concentration. The numbers
associated with each temperature profile are the Rayleigh number (in terms of Ra, for each model) and the
mantle viscosity (cm?[s), respectively.

Figure 2 shows the average (over a spherical surface) lunar temperature as a function of
depth in the thin lithosphere model for Rayleigh numbers of 10, 50, 100 and 500 times the
critical value, or for viscosities of 1071, 2 x 1072, 10~2%, 2 x 1073 times the value 5.7 x 102 cm2/s
(solid lines). Average temperature profiles of the thick lithosphere model for Ra equal to 1, 2.5,
10 and 50 times Ra, or for v equal to 1, 0.4, 0.1 and 0.02 times 2 x 1022 cm?/s are also shown
in the figure (dashed lines). With increasing Rayleigh number or decreasing viscosity, there is a
decrease in mantle temperature as subsolidus creep becomes a more efficient cooling mechanism.
The mantle temperature is rather uniform, especially so at the lower viscosity values. The
average temperature profile in the rigid lithosphere is fixed at the solution to the steady-state
thermal conduction equation. Although temperatures in the outer part of the thick lithosphere
model Moon are smaller than those in the outer part of the thin lithosphere model Moon, the
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deep temperatures (depth X 1000 km) in both models are comparable. The local maxima in
the temperature profiles of the thin lithosphere model, especially at Rayleigh numbers 10 and
50 times critical, reflect real thermal characteristics of convection in an internally heated
spherical shell. They correspond to the existence of closed isotherms in the convecting mantle.
However, the very broad, local minima occurring deep in the mantle may result from the
computational limitations.

Which of the above profiles (if any) represent the state of the lunar interior depends on
rheological considerations to be discussed in the following sections.

SUBSOLIDUS CREEP OF GEOLOGIC MATERIAL

Theoretical models of creep (Weertman 1970) at subsolidus temperatures and at pressures
comparable to those in the Earth’s upper mantle and throughout the Moon lead to a rheo-
logical or constitutive equation of the form

¢ = (BIT) exp [ - (E*+pV*)/(RT)], (19)

where € is the rate of strain, 7" is the absolute temperature, p is the pressure, 7 is the shear stress
and R is the gas constant. The parameter » depends on the microscopic mechanism of deforma-
tion, diffusion creep (n = 1) or the motion of dislocations (n > 1), as does the constant B. The
activation energy E* and activation volume V* are determined by the diffusion of the slowest,
and thus rate-controlling, atomic species. Diffusion creep (Nabarro 1948; Herring 1950)
probably applies at low values of stress 7 while the mechanism of dislocation motion assumes
importance at higher values of stress (Weertman 1970). The value of stress above and below
which the different deformation mechanisms become dominant is uncertain and may not even
be capable of precise definition; one may speculate that it is $1 bar (see discussion below).

Creep and relaxation experiments (Carter & Avé Lallemand 1970; Post 1973) on olivine
yield results in agreement with the above expression, although the 1/7 factor in front of the
exponential is usually not resolved and the range of applied pressure is too limited to allow a
determination of the pressure dependence. Such measurements and optical or electron trans-
mission microscopy studies of both mantle derived and laboratory deformed olivine crystals
(Raleigh 1968; Phakey et al. 1972; Goetze & Kohlstedt 1973) have led to the recognition of
the importance of dislocation motion as a mechanism for mantle deformation. Recent analysis
by Post & Griggs (1973) of Fennoscandian uplift data suggest a non-Newtonian rheology for
the Earth’s mantle with z» ~ 3.

The kinematic viscosity v is 7/(2pé). Using (19), we find

E*+1)V*) (20)

— l 1-n (
V= T exp RT .

2pB

Except for the Newtonian case (z = 1), the viscosity is stress-dependent.
We consider two sets of values for the rheological parameters, a Newtonian one (n = 1) and
a non-Newtonian one with » = 3. For the non-Newtonian case, the values of E* and B are
based on the high-temperature, low-stress (50-1500 bar) creep data of Kohlstedt & Goetze
(1974) for dry olivine single crystals. It is important to use values of E* and B appropriate to
dry olivine since the presence of water can drastically alter the rheological parameters of a
mineral (Griggs 1974) and the Moon is severely depleted in volatiles (Gast 1972; Kaula 1972).

34-2
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The appropriate values of E* and B for the non-Newtonian case are 125 kcal (500 kJ)/mol
and 6.5 x 10713 cm? 5 K g3, respectively. The value of V* probably lies between 10 and 40
cm®/mol, with the smaller values more likely to be preferable. This uncertainty is not a serious
matter since at the pressures in the lunar interior, £* is an order of magnitude larger than pV*,
We assume V* = 11 cm®/mol and p = 35 kbar, the pressure at a depth of half the lunar radius.

2000

K

& 1800

1600

100 107 107 0%
v[(cm?/s)

Ficure 3. Viscosity—temperature relations based on the creep behaviour of geologic material and the numerical
calculations of convection in the Moon’s interior. The bottom solid line gives the effective viscosity of dry olivine
undergoing non-Newtonian deformation at a shear stress of 1 bar; the upper dashed line is a similar viscosity
curve for a shear stress of 0.1 bar. The middle solid line is a viscosity associated with Newtonian or diffusion
creep. The upper shaded band gives the average mantle convection temperature for the model with a 300 km
thick lithosphere; the lower band provides the same temperatures for the 800 km thick lithosphere model.
The widths of the bands approximate the uncertainties in the calculated mantle temperatures. The inter-
sections of the bands with either of the solid curves yield estimates of the deep lunar temperature and associated
viscosity.

The bottom solid curve in figure 3 shows the v~T relation for the non-Newtonian case just
discussed and an assumed stress 7 = 1 bar. The stress level in the interior of the Moon is
unknown. Presumably the shear stresses in a convecting lunar mantle would be much less than
the stress differences in the lithosphere associated with the mascons. Such stress differences are
about 50-100 bars (Kaula 1972; Arkani-Hamed 1973). Since v oc 7%, 7 = 10 bar would
result in lunar mantle viscosities much lower than that of the Earth’s mantle for which
v & 1022 cm?/s (Cathles 1975). The upper dashed curve of figure 3 shows the non-Newtonian
effective viscosity for 7 = 0.1 bar. At such small 7, the relevant deformation mechanism is
probably diffusion creep, in which case the viscosity would be much lower for a given 7 and
the middle solid curve for the diffusion creep or Newtonian viscosity (see below) would be
pertinent.

There are no laboratory data demonstrating the Newtonian creep of geologic material. We
base our Newtonian viscosity curve on the equation by Turcotte & Oxburgh (1972) for the
viscosity of the Earth’s upper mantle (with p = 35 kbar)

5.605 x 104
, (21)

= T21x10s *P ( T
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where T'is in K and » has units cm?/s. It can be seen from figure 3 that this Newtonian viscosity
is very similar in its magnitude and temperature dependence to the effective viscosity of dry
olivine undergoing non-Newtonian creep at 7 = 1 bar.

We expect either of these »-T curves to be reasonable representations of the temperature-
dependent effective viscosity of the lunar interior.

LUNAR TEMPERATURE: SIMULTANEOUS CONSIDERATION OF CONVECTION
CALCULATIONS AND CREEP BEHAVIOUR

The temperature profiles of figure 2 show that the spherically-averaged temperature of the
lunar mantle is nearly constant, especially at the higher Rayleigh numbers or lower viscosities.
Thus we can associate a single temperature, e.g. the mean temperature of the lower 3/4 of the
lunar mantle (by radius), with convection at a particular Rayleigh number or mantle viscosity.
We show these convection temperatures as functions of viscosity by the shaded bands on figure 3,
the upper band for the thin lithosphere model and the lower one for the thick lithosphere
model. The thickness of the bands represents our estimate of the uncertainty in the con-
vection temperature for a given viscosity. The uncertainty estimate includes the fact that
there are temperature variations in the mantle, especially near the mantle-lithosphere
interface. Perhaps more importantly, the uncertainty takes into account the fluctuations of a
few percent in the numerical calculations of the average temperature (recall the quasi-steady
nature of the average convection temperatures at the higher Rayleigh numbers).

Since the temperature and viscosity in the lunar mantle must self-adjust to satisfy the
constraints of the deformation law and the convection calculations, the intersections of the
shaded regions with either of the solid curves in figure 3 simultaneously determine the mantle
temperatures and viscosities of thin and thick lithosphere models. For either model, the average
mantle temperature is between about 1550 and 1620 K and the average mantle viscosity lies
between 102! and 5 x 1021 cm?/s. Considering the uncertainties in the creep behaviour of the
material and the approximate nature of the convection calculations, conservative estimates of
the temperature and viscosity of the lunar mantle are 1500-1600 K and 10%2-10%2 cm?fs,
respectively.

It is noteworthy that the thermal and viscous states of the mantle of both the thin and thick
lithosphere models are essentially the same. Thus our computation of the deep lunar tempera-
ture is quite insensitive to the assumed lithosphere thickness, provided the radiogenic heat
source concentration is ‘consistent’ (from the steady state point of view) with this thickness.
Of course, this conclusion cannot be carried to the extreme wherein the depletion of radio-
actives from the interior of the Moon is so large as to preclude convection from occurring
at all.

There is essentially no difference in the thermal and mechanical states of the very deep
interiors of the thin and thick lithosphere model Moons (as can be seen in figures 2 and 3). The
thin lithosphere model has a much more uniform average temperature throughout the interior,
which extends to within about 400 km of the surface. The thick lithosphere model has, of
course, much lower temperatures in the outer 1000 km of the Moon with the temperature rising
essentially along a conduction profile and levelling out at the uniform mantle temperature at a
depth of about 1000 km.

If the thickness of the Moon’s lithosphere is 300 km or less, then geologic time is sufficient for
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the establishment of a steady conduction temperature in the rigid lithosphere; for the mantle,
we have noted that quasi-steady average temperatures are established in a region of convection
on a time scale of only 0.1 the conduction time for the region. If the lithosphere is indeed as
thick as 800 km then it is possible that a steady thermal state has not been established in either
the lithosphere or mantle.

CONCLUSIONS: COMPARISON OF THERMAL MODELS WITH INFERENCES FROM
GEOPHYSICAL DATA

Lunar heat flux measurements

In situ lunar surface heat flow determinations are 0.53 pcal (2.2 pJ)/cm? s at the Apollo 15
site and 0.38 pcal (1.6 uJ)/cm?s at the Apollo 17 site (Langseth et al. 1976). If these lunar
heat flux values are representative of the global average, and if the lunar and terrestrial heat
flows measure the total amount of internal radioactive heat generation in the respective
bodies, then the average lunar concentration of radiogenic sources is comparable to the terrestrial
one. Undoubtedly there has been an upward concentration of radioactivity on the Moon associ-
ated with the differentiation of at least the outer several hundred kilometres of the body. Thus we
cannot infer the value of the deep radio-genic source concentration from the surface heat flux
measurements. Remote and terrestrial-based observations of the lunar microwave emission
spectrum give hope of eventually providing a global average lunar surface heat flux (Keihm &
Langseth 1975).

Seismic observations

Lunar seismic data from distant meteroid impacts, high frequency teleseismic events and deep
moonquakes have led Nakamura ef al. (1974) to conclude that there exists a zone of high shear
wave attenuation below a depth of about 800 km (see also Nakamura et al. 1973) and that there
may exist a zone of radius 170-360 km at the centre of the Moon characterized by a greatly
reduced P-wave velocity. They speculate that partial melting may occur in the region of shear
wave attenuation and that a small molten core of iron sulphide may exist. In addition, the P
and § wave velocities at depths of several hundred kilometres are consistent with a mineral
assemblage of olivine and pyroxene (see also Duba & Ringwood 1973) which is richer in the
former mineral.

The deep lunar temperature we calculate here, 1500-1600 K, is sufficiently high that it may
correspond, or approach very closely, to lunar solidus temperatures at depths greater than
about 800 km. Our estimate of the deep temperature is about 300 K lower than the melting
point of iron at pressures above about 40 kbar (Higgins & Kennedy 1971). Therefore it is
consistent only with a solid pure iron core or a molten Fe core with a light alloying element
which depresses the melting point.

Electrical conductivity determinations

Electrical conductivity profiles of the Moon, inferred from simultaneous surface and orbiter
magnetic measurements, together with laboratory data on the electrical conductivity of
olivines and pyroxenes as functions of temperature and oxygen fugacity, provide estimates of
the deep lunar temperature. Duba & Ringwood (1973) and Sonett & Duba (1975) have used
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data on the electrical conductivity of these minerals at oxygen fugacities supposedly character-
istic of the lunar interior and electrical conductivity models of Sonett ¢t al. (1971) to infer deep
lunar temperatures in the range 1550-1750 K. These temperatures are in excellent agreement
with the temperatures 1500-1600 K of the solid state convection thermal models of this paper.

An important aspect of the lunar electrical conductivity models (Sonett ¢f al. 1972) is that
below about 200 km depth the conductivity rises only very slowly with depth, indicative of a
nearly uniform temperature as would result from heat transport by subsolidus creep (Turcotte
et al. 1972; Kuckes 1972). This characteristic of the lunar electrical conductivity provides
support for the thin lithosphere model of this paper (thickness <300 km), wherein much of the
Moon’s interior is at a nearly uniform temperature maintained by solid state convective cooling.

This work was supported in part by N.A.S.A. under NGL 05-007-002.
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